Al. Platinum-Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithium-Air Batteries. J. Am. Chem. Soc. 132, 121702171 (2010). 9. Brouzgou, A., Song, S. Q. Tsiakaras, P. Low and non-platinum electrocatalysts for PEMFCs: Present status, challenges and prospects. Appl. Catal. B 127, 37188 (2012). 10. Alonso-Vante, N. Platinum and Non-Platinum Nanomaterials for the Molecular Oxygen Reduction Reaction. Chemphyschem 11, 2732744 (2010). 11. Watanabe, M., Tryk, D. A., Wakisaka, M., Yano, H. Uchida, H. Overview of recent developments in oxygen reduction electrocatalysis. Electrochim. Acta 84, 18701 (2012). 12. Wang, C., Markovic, N. M. Stamenkovic, V. R. Sophisticated Platinum Alloy Electrocatalysts for the Oxygen Reduction Reaction. ACS Catal. 2, 89198 (2012). 13. Stamenkovic, V. et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. Int. Ed. 45, 2897901 (2006).SCIENTIFIC REPORTS | three : 3234 | DOI: ten.1038/srepwww.nature/scientificreports45. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) by way of increased surface internet site availability. Science 315, 49397 (2007). 46. van der Vliet, D. F. et al. Mesostructured thin films as electrocatalysts with tunable composition and surface morphology. Nature Mater. 11, 1051058 (2012). 47. Wang, C. et al. Design and style and Synthesis of Bimetallic Electrocatalyst with Multilayered Pt-Skin Surfaces. J. Am. Chem. Soc. 133, 143964403 (2011). 48. Stamenkovic, V. R. et al. Trends in electrocatalysis on extended and nanoscale Ptbimetallic alloy surfaces. Nature Mater. 6, 24147 (2007). 49. Kuttiyiel, K. A. et al. Nitride Stabilized PtNi Core-Shell Nanocatalyst for higher Oxygen Reduction Activity.Farletuzumab ecteribulin supplier Nano Lett. 12, 6266271 (2012). 50. Zhang, J., Sasaki, K., Sutter, E. Adzic, R. R. Stabilization of platinum oxygenreduction electrocatalysts utilizing gold clusters. Science 315, 22022 (2007). 51. Koenigsmann, C. et al. Enhanced Electrocatalytic Overall performance of Processed, Ultrathin, Supported Pd-Pt Core-Shell Nanowire Catalysts for the Oxygen Reduction Reaction. J. Am. Chem. Soc. 133, 9783795 (2011). 52. Wang, J. X. et al. Kirkendall Effect and Lattice Contraction in Nanocatalysts: A new Strategy to Enhance Sustainable Activity. J. Am. Chem. Soc. 133, 135513557 (2011). 53. Torres, J., Perry, C. C., Bransfield, S. J. Fairbrother, A. H. Low-temperature oxidation of nitrided iron surfaces. J. Phys. Chem. B 107, 5558567 (2003). 54. Zhou, Y. K. et al. Improving PEM fuel cell catalyst activity and durability utilizing nitrogen-doped carbon supports: observations from model Pt/HOPG systems. J. Mater. Chem. 19, 7830838 (2009). 55. Geng, D. S. et al.O-1602 GPR55 Higher oxygen-reduction activity and durability of nitrogen-doped grapheme.PMID:34856019 Energy Environ. Sci. four, 76064 (2011). 56. Li, Y. G. et al. An oxygen reduction electrocatalyst according to carbon nanotubegraphene complexes. Nat. Nanotechnol. 7, 39400 (2012). 57. Olson, T. S. et al. Enhanced Fuel Cell Catalyst Durability with Nitrogen Modified Carbon Supports. J. Electrochem. Soc. 160, F389 394 (2013).AcknowledgmentsThis work is supported by the important plan of Beijing Municipal Organic Science Foundation (No. 2110001), National Organic Science Foundation of China (No. 11179001) and National Higher Technologies Analysis and Development Plan (863, No. 2012AA052201). Plus the calculation component was performed around the Deep Comp 7000 method with the Super Computing Center of the Chinese Academy of Sci.